The prototype uses an ultra-short high-intensity burst of laser light to illuminate a scene.
The device constructs a basic image of its surroundings - including objects hidden around the corner - by collecting the tiny amounts of light that bounce around the scene.
The Massachusetts Institute of Technology team believe it has uses in search and rescue and robot vision.
"It's like having X-ray vision without the X-rays," said Professor Ramesh Raskar, head of the Camera Culture group at the MIT Media Lab and one of the team behind the system.
"But we're going around the problem rather than going through it."
Professor Shree Nayar of Columbia University, an expert in light scattering and computer vision, was very complimentary about the work and said it was a new and "very interesting research direction".
"What is not entirely clear is what complexities of invisible scenes are computable at this point," he told BBC News.
"They have not yet shown recovery of an entire [real-world] scene, for instance."
Ramesh Raskar explains how the camera can shoot
around corners.
The device constructs a basic image of its surroundings - including objects hidden around the corner - by collecting the tiny amounts of light that bounce around the scene.
The Massachusetts Institute of Technology team believe it has uses in search and rescue and robot vision.
"It's like having X-ray vision without the X-rays," said Professor Ramesh Raskar, head of the Camera Culture group at the MIT Media Lab and one of the team behind the system.
"But we're going around the problem rather than going through it."
Professor Shree Nayar of Columbia University, an expert in light scattering and computer vision, was very complimentary about the work and said it was a new and "very interesting research direction".
"What is not entirely clear is what complexities of invisible scenes are computable at this point," he told BBC News.
"They have not yet shown recovery of an entire [real-world] scene, for instance."
around corners.